Device for Harvesting Energy and Water from Human Waste gets Green Light

A project from a team of researchers from Imperial College London, the University of Manchester and Durham University beat more than 2,000 other proposals to receive funding from the Bill and Melinda Gates Foundation to develop a prototype system for recovering drinkable water and harvesting hydrogen energy from human faecal waste. The researchers believe the technology could provide an inexpensive device for people in the developing world to generate clean water and energy from waste and a sustainable source of hydrogen energy that could be used to power homes in developed countries.
 
The researchers say that the device will be portable, allowing installation in homes and remote locations. The technology is based on a porous scaffold that holds bacteria and metal nano-particles. When faecal sludge is filtered through the scaffolding these particles will react with the waste mater to generate the recycled resources. These can either be used immediately or stored for later use.
 
The first stage of the project will see the team developing a stand-alone sanitation device, making it easier and cheaper for people in developing countries to adopt the technology where large sewage networks may not exist. Where sewage infrastructure is in place, the technology could be hooked into the system, minimising implementation costs for home owners.
 
In the long-term, the researchers aim to further develop their device into a ‘pick and mix’ series of recycling units that can extract the types of resources most useful for users such as: electrolytes, used for generating electricity; methane, for energy; and ammonia, which is a widely used fertilizer. The team says their device would be an advantage over other systems currently on the market that can only recover one or two resources at most.
 
“In the future, we may see homes in the UK generating their own clean water, energy and fertilizer simply by doing what comes naturally to us all once or twice day," says Dr. Martyn McLachlan, Department of Materials at Imperial. "More important are the implications for developing countries, where the provision of clean drinking water is essential for supporting life and self-generated energy could be used to support economic growth.”
 
The researchers plan to have a prototype ready to demonstrate by 2013. The project team and the concept were a product of a recent Engineering and Physical Sciences Research Council "Inspire in the Physical Sciences" workshop.

Download Center

  • Monitoring and Reporting on Air Emissions for Regulators and the Real World

    When it comes to managing compliance and regulatory issues surrounding air emissions, there are no easy jobs. With interviews from practitioners from American Electric Power, Red Cedar Gathering, Trinity Consultants, and Cority, this eBook provides practical advice to advance your air emissions monitoring and reporting programs.

  • What Every EHS Professional Should Know About ESG

    Join experts from Arcadis and Cority on April 27th to learn the most common ESG reporting frameworks and how technology can help you improve reporting efficiency, identify areas for improvement, and create defensible audit trails.

  • Green Quadrant EHS Software 2021

    Read the new report by independent analyst firm, Verdantix, to get an unbiased comparison of the 22 most prominent EHS software vendors in the industry.

  • RFP Template for Waste Management Software

    Learn the essential questions to ask when evaluating waste management software solutions with this free, ready-to-use RFP template

  • 5 Keys to Best-in-Class Chemical Management

    Running a safe chemical program is challenging and complex: from knowing what's on-site to proper handling and disposal - all while navigating regulatory changes. Learn the best ways to mitigate chemical risk, get the most value out of your data, and gain buy-in for a chemical management solution.

Featured Webinar