Mapping Grasslands for Biofuel Potential

USGS scientists have developed a new method for mapping grasslands that demonstrate high potential for growing biofuel crops with relatively little energy input and environmental impact.    

The pioneering investigation used remote sensing data from satellites to identify detailed areas of the Greater Platte River Basin (most of Nebraska, parts of adjacent states) that are best suited for producing cellulosic (from the cell walls of plants) biofuel derived from hardy switchgrass, a native plant that grows wild or is easily cultivated. 

"This innovative scientific study takes some of the guesswork out of deciding whether it could be feasible to raise a potentially high value crop for biofuels on America's grasslands," said USGS Director Marcia McNutt. "Using non-food crops for fuel grown on land not now under cultivation is a low-impact step towards America's energy independence." 

The maps of areas with high biofuel production potential were produced by combining satellite-derived vegetation data with weather data, soil types, terrain, and other physical data. An analytical method developed by the authors helps separate the influence of long-term year-to-year weather changes (e.g. drought) from short-term disturbance changes (e.g. fire or overgrazing) in order to identify suitable areas more accurately. The maps can be used to optimize land use decisions for biofuel development and sustainability. 

Demand for biofuel products is expected to increase as the world seeks alternatives to fossil fuels. Critical considerations concerning the broader production of biofuels include issues of how much energy we get from the biofuel compared to the amount of energy required to grow and process it; its environmental impact; and the effect of biofuel production on prices of human food,  livestock feed, and agricultural land.  

Cellulosic-based production of biofuel uses the inedible structural material of plants which can be supplied from sources such as grasses (commonly switchgrass and miscanthus), woody biomass, and agricultural and municipal wastes. 

Currently, ethanol produced from corn is the most common biofuel product in the United States. The negative environmental effects resulting from corn-based biofuel development often include soil erosion, water quality impairment from pesticides and fertilizer, and demand for irrigation water. 

Deep-rooted switchgrass, one of the dominant plant species of the central North American tallgrass prairie, helps limit soil erosion and can be grown on land considered unsuitable for row crop production (including corn) as well as in sandy and gravelly soils that typically produce low yields of conventional farm crops. 

As solutions to the technical challenges of producing cellulosic-based biofuel efficiently begin to move this energy source toward a competitive market position, demand for cellulosic feedstocks such as switchgrass is expected to increase.    

The study was published in the January 2012 issue of Global Change Biology Bioenergy


Download Center

  • Monitoring and Reporting on Air Emissions for Regulators and the Real World

    When it comes to managing compliance and regulatory issues surrounding air emissions, there are no easy jobs. With interviews from practitioners from American Electric Power, Red Cedar Gathering, Trinity Consultants, and Cority, this eBook provides practical advice to advance your air emissions monitoring and reporting programs.

  • What Every EHS Professional Should Know About ESG

    Join experts from Arcadis and Cority on April 27th to learn the most common ESG reporting frameworks and how technology can help you improve reporting efficiency, identify areas for improvement, and create defensible audit trails.

  • Green Quadrant EHS Software 2021

    Read the new report by independent analyst firm, Verdantix, to get an unbiased comparison of the 22 most prominent EHS software vendors in the industry.

  • RFP Template for Waste Management Software

    Learn the essential questions to ask when evaluating waste management software solutions with this free, ready-to-use RFP template

  • 5 Keys to Best-in-Class Chemical Management

    Running a safe chemical program is challenging and complex: from knowing what's on-site to proper handling and disposal - all while navigating regulatory changes. Learn the best ways to mitigate chemical risk, get the most value out of your data, and gain buy-in for a chemical management solution.

Featured Webinar