Genomics of Wood for Biofuels Production Investigated

A team of Virginia Tech researchers is working to characterize the genes involved in wood formation in poplar trees with the goal of improving the quality and quantity of wood as a feedstock for biofuels production.

"This type of genomics research is an important complement to the work of other biofuels researchers who develop better and more efficient ways to process woody biomass for biofuels," said Eric Beers, professor of horticulture and the lead investigator on the project. "The ultimate goal is to help develop renewable energy and advanced biofuels to provide a more secure future for domestic energy needs and develop new opportunities for our agriculture industry."
 
According to Beers, the potential benefits of this research include decreasing oil imports, reducing the use of food crops for ethanol production, and increasing options for American farmers. Because some cultivars of poplar are more tolerant of conditions such as drought and poor soils, they can be grown on marginal lands unsuitable for food crops, thereby avoiding competition with food production. Farmers will thus have the option to grow bioenergy crops in addition to other existing crop choices.
 
This work is funded by a $1.5 million grant received from the U.S. Department of Energy and the U.S. Department of Agriculture Plant Feedstocks Genomics for Bioenergy Program. Virginia Tech is one of 11 universities that have received funding to conduct research to accelerate bioenergy crop production and spur economic impact. Other plants being studied as possible sources of biofuels or as model organisms to advance the field of biofuels production are switchgrass, Miscanthus, sugarcane, sorghum, and Brachypodium.
 
This work is a continuation of work begun in 2007 that identified, cloned, and sequenced approximately 400 genes that are associated with wood formation in poplar. These wood-associated genes serve as the foundational resource for the current project, and several have been the subjects of detailed functional analysis during the previous funding period.
 
Amy Brunner, associate professor of forest research and environmental conservation; Richard Helm, associate professor of biochemistry; and Allan Dickerman, assistant professor at the Virginia Bioinformatics Institute; are co-investigators on the project.
 
Over the next three years, researchers will identify the key interactions among hundreds of proteins associated with wood formation in poplar. These findings will form the basis for the creation of transgenic poplar plants. The transgenic poplars will be designed to produce higher or lower levels of selected interacting proteins. Chemical, physiological, and molecular analysis of the transgenic trees will be performed to learn more about the basic biology of wood formation and to determine whether such genetic modifications can increase the value of poplar as a biofuels feedstock.

Download Center

  • Your Guide to Environmental Metrics that Drive Performance

    Translating sustainability into action starts with implementing the right metrics to assess your environmental risk and performance. Learn how to design metrics that improve your decision-making process and drive enterprise performance.

  • Unpacking ESG: 6 Questions You Were Too Afraid to Ask

    Environmental and Sustainability experts from Arcadis and Cority answer 6 of the most pressing questions EHS professionals have about getting started with Environmental, Social, and Governance (ESG) reporting.

  • 5 Keys to Best-in-Class Chemical Management

    Running a safe chemical program is challenging and complex: from knowing what's on-site to proper handling and disposal - all while navigating regulatory changes. Learn the best ways to mitigate chemical risk, get the most value out of your data, and gain buy-in for a chemical management solution.

  • Streamline Your Air Emissions Management

    See how consolidating all your emissions management functions into one centralized system can help you streamline your operations, more easily maintain compliance, and achieve greater time and cost savings.

  • A Crash Course in Creating the Right Environmental Scoring System

    Learn how to develop the right environmental scoring system so you can easily benchmark performance across all your facilities and gain a holistic view of your environmental programs.

  • Industry Safe