Using Less Water is No Small Potatoes

Research conducted in part at the U.S. Department of Agriculture (USDA) has confirmed that in some production systems, planting potatoes in flat beds can increase irrigation water use efficiency.

Agricultural Research Service (ARS) agricultural engineer Bradley King, who works at the ARS Northwest Irrigation and Soils Research Laboratory in Kimberly, Idaho, was one of the scientists who led these studies. ARS is USDA's chief intramural scientific research agency, and this research supports the USDA commitment to enhancing sustainable agriculture. When potato production started in Idaho more than 100 years ago, farmers seeded their crops in ridged rows and watered their plants by channeling surface irrigation to flow through the furrows between the rows. Even though most commercial potato producers in the Pacific Northwest now irrigate their crops with sprinklers, they still typically use ridged-row planting systems.

But this planting configuration allows irrigation runoff to collect in the furrow and percolate below the crop root zone. This means that the water is unavailable to the crops, and can also lead to increased nitrate leaching from the soil.

King and his partners conducted a series of studies on planting potatoes in flat beds instead of ridged rows. One two-year study compared ridge-row planting systems, a 5-row planting configuration on a raised bed where the plant rows were 26 inches apart, and a 7-row planting configuration on a raised bed where the plant rows were 18 inches apart. Another 5-year study on approximately 6,900 acres only compared ridged-row systems and 5-row raised-bed systems.

The researchers found that using the flat bed system increased yields by an average of 6 percent, even though it used 5 percent less water. This meant that using flat beds instead of ridged rows for potato production led to an overall 12 percent increase in irrigation water use efficiency. The gains were attributed to several factors, especially the probability that planting potatoes in flat beds improves water and nitrogen use efficiency because more water reaches the potato roots.

These findings, which were published in 2011 in the American Journal of Potato Research, could help commercial farmers increase yields and profits, save valuable water resources, and reduce nitrate leaching.

Download Center

  • Your Guide to Environmental Metrics that Drive Performance

    Translating sustainability into action starts with implementing the right metrics to assess your environmental risk and performance. Learn how to design metrics that improve your decision-making process and drive enterprise performance.

  • Unpacking ESG: 6 Questions You Were Too Afraid to Ask

    Environmental and Sustainability experts from Arcadis and Cority answer 6 of the most pressing questions EHS professionals have about getting started with Environmental, Social, and Governance (ESG) reporting.

  • 5 Keys to Best-in-Class Chemical Management

    Running a safe chemical program is challenging and complex: from knowing what's on-site to proper handling and disposal - all while navigating regulatory changes. Learn the best ways to mitigate chemical risk, get the most value out of your data, and gain buy-in for a chemical management solution.

  • Streamline Your Air Emissions Management

    See how consolidating all your emissions management functions into one centralized system can help you streamline your operations, more easily maintain compliance, and achieve greater time and cost savings.

  • A Crash Course in Creating the Right Environmental Scoring System

    Learn how to develop the right environmental scoring system so you can easily benchmark performance across all your facilities and gain a holistic view of your environmental programs.

  • Industry Safe