Showerheads Harbor Biofilm, Bacteria, Colorado Study Shows

A University of Colorado at Boulder study says bathroom showers can deliver potentially pathogenic bacteria to bathers through the water.

Using high-tech instruments and lab methods to analyze roughly 50 showerheads from nine cities in seven states, the researchers concluded about 30 percent of the devices harbored significant levels of Mycobacterium avium, a pathogen linked to pulmonary disease.

CU-Boulder Distinguished Professor Norman Pace, lead study author, said it's not surprising to find pathogens in municipal waters. But the researchers found that some M. avium and related pathogens were clumped together in slimy "biofilms" that clung to the inside of showerheads at more than 100 times the "background" levels of municipal water. "If you are getting a face full of water when you first turn your shower on, that means you are probably getting a particularly high load of Mycobacterium avium, which may not be too healthy," he said.

The study appeared in the Sept. 14 online edition of the Proceedings of the National Academy of Sciences. Co-authors of the study include CU-Boulder researchers Leah Feazel, Laura Baumgartner, Kristen Peterson and Daniel Frank and University Colorado Denver pediatrics department Associate Professor Kirk Harris. The study is part of a larger effort by Pace and his colleagues to assess the microbiology of indoor environments and was supported by the Alfred P. Sloan Foundation.

Research at National Jewish Hospital in Denver indicates that increases in pulmonary infections in the United States in recent decades from so-called "non-tuberculosis" mycobacteria species like M. avium may be linked to people taking more showers and fewer baths, said Pace. Water spurting from showerheads can distribute pathogen-filled droplets that suspend themselves in the air and can easily be inhaled into the deepest parts of the lungs, he said.

Symptoms of pulmonary disease caused by M. avium can include tiredness, a persistent, dry cough, shortness of breath, weakness and "generally feeling bad," said Pace. Immune-compromised people like pregnant women, the elderly and those who are fighting off other diseases are more prone to experience such symptoms, said Pace, a professor in the molecular, cellular and developmental biology department.

The CU-Boulder researchers sampled showerheads in homes, apartment buildings and public places in New York, Illinois, Colorado, Tennessee and North Dakota.

During the early stages of the study, the CU team tested showerheads from smaller towns and cities, many of which were using well water rather than municipal water. "We were starting to conclude that pathogen levels we detected in the showerheads were pretty boring," said Feazel, first author on the study. "Then we worked up the New York data and saw a lot of M. avium. It completely reinvigorated the study."

In addition to the showerhead swabbing technique, Feazel took several individual showerheads, broke them into tiny pieces, coated them with gold, used a fluorescent dye to stain the surfaces and used a scanning electron microscope to look at the surfaces in detail. "Once we started analyzing the big metropolitan data, it suddenly became a huge story to us," said Feazel, who began working in Pace's lab as an undergraduate.

In Denver, one showerhead in the study with high loads of the pathogen Mycobacterium gordonae was cleaned with a bleach solution in an attempt to eradicate it, said Pace. Tests on the showerhead several months later showed the bleach treatment ironically caused a three-fold increase in M. gordonae, indicating a general resistance of mycobacteria species to chlorine.

So is it dangerous to take showers? "Probably not, if your immune system is not compromised in some way," said Pace. "But it's like anything else -- there is a risk associated with it." Pace said since plastic showerheads appear to "load up" with more pathogen-enriched biofilms, metal showerheads may be a good alternative.

"There are lessons to be learned here in terms of how we handle and monitor water," said Pace. "Water monitoring in this country is frankly archaic. The tools now exist to monitor it far more accurately and far less expensively that what is routinely being done today."

comments powered by Disqus