Ecologists Use Ocean Data to Predict Climate Change
Earth scientists are attempting to predict the future impacts of climate change by reconstructing the past behavior of Arctic climate and ocean circulation.
In a November special issue of the journal Ecology, a group of scientists report that if current patterns of change in the Arctic and North Atlantic Oceans continue, alterations of ocean circulation could occur on a global scale, with potentially dramatic implications for the world's climate and biosphere.
Charles Greene of Cornell University and his colleagues reconstructed the patterns of climate change in the Arctic from the Paleocene epoch to the present. Over these 65 million years, the Earth has undergone several major warming and cooling episodes, which were largely mitigated by the expansion and contraction of sea ice in the Arctic.
"When the Arctic cools and ice sheets and sea ice expand, the increased ice cover increases albedo, or reflectance of the sun's rays by the ice," says Greene, the lead author on the paper. "When more of the sun is reflected rather than absorbed, this leads to global cooling."
Likewise, when ice sheets and sea ice contract and expose the darker-colored land or ocean underneath, heat is absorbed, accelerating climate warming. Currently, the Earth is in the midst of an interglacial period, characterized by retracted ice sheets and warmer temperatures.
In the past three decades, changes in Arctic climate and ice cover have led to several reorganizations of northern ocean circulation patterns. Since 1989, a species of plankton native to the Pacific Ocean has been colonizing the North Atlantic Ocean, a feat that hasn't occurred in more than 800,000 years. These plankton were carried across the Arctic Ocean by Pacific waters that made their way to the North Atlantic.
"When Arctic climate changes, waters in the Arctic can go from storing large quantities of freshwater to exporting that freshwater to the North Atlantic in large pulses, referred to as great salinity anomalies," Greene explains. "These GSAs flow southward, disrupting the ocean's circulation patterns and altering the temperature stratification observed in marine ecosystems."
In the continental shelf waters of the Northwest Atlantic, the arrival of a GSA during the early 1990s led to a major ecosystem reorganization, or regime shift. Some ocean ecosystems in the Northwest Atlantic saw major drops in salinity, increased stratification, an explosion of some marine invertebrate populations and a collapse of cod stocks.
"The changes in shelf ecosystems between the 1980s and 1990s were remarkable," says Greene. "Now we have a much better idea about the role climate had in this regime shift."