Improving Air Quality With No-Till Cropping

Studies by U.S. Department of Agriculture (USDA) scientists show some no-till management systems can lower atmospheric levels of PM10—soil particles and other material 10 microns or less in diameter that degrade air quality—that are eroded from crop fields via the wind. These findings could help Pacific Northwest farmers reduce erosion from their fields and assist communities in complying with federal air quality regulations.

Agricultural Research Service (ARS) research leader Brenton Sharratt and ARS agronomist Frank Young conducted this research, which supports the USDA priorities of promoting international food security and responding to climate change. ARS is USDA's chief scientific research agency. Both scientists work at the ARS Land Management and Water Conservation Research Unit in Pullman, Wash.

Farmers in the inland Pacific Northwest favor winter wheat-summer fallow production systems so that crops can germinate and grow during late summer and fall. But controlling weeds and conserving soil water during the summer can require up to eight tillage passes. This produces a dry, loose layer of fine soil particles that can be easily eroded by strong summer winds.

Sharratt and Young conducted an 11-year study that evaluated whether no-till spring cereal rotations could help mitigate wind erosion. The systems they studied included typical winter wheat/summer fallow rotations, no-till spring barley/spring wheat rotations, and no-till spring wheat/chemical fallow rotations.

The scientists found that in the spring, soils in spring barley and spring wheat rotations were wetter than soils in traditional winter wheat systems. In late summer, the spring barley rotation also had more standing stubble than the other two rotations. The stubble helped keep soil on the ground and out of the air. Spring wheat/spring barley rotations also resulted in soils that had larger and more continuous pore space, higher water infiltration rates, higher saturated hydraulic conductivity, and higher drainage rates.

Sharratt and Young concluded that annual no-till spring cereal crops could significantly improve water infiltration and retention and help retain crop surface residue in the late summer—results that improve soil quality and reduce soil losses from wind erosion.

 

Download Center

  • Your Guide to Environmental Metrics that Drive Performance

    Translating sustainability into action starts with implementing the right metrics to assess your environmental risk and performance. Learn how to design metrics that improve your decision-making process and drive enterprise performance.

  • Unpacking ESG: 6 Questions You Were Too Afraid to Ask

    Environmental and Sustainability experts from Arcadis and Cority answer 6 of the most pressing questions EHS professionals have about getting started with Environmental, Social, and Governance (ESG) reporting.

  • 5 Keys to Best-in-Class Chemical Management

    Running a safe chemical program is challenging and complex: from knowing what's on-site to proper handling and disposal - all while navigating regulatory changes. Learn the best ways to mitigate chemical risk, get the most value out of your data, and gain buy-in for a chemical management solution.

  • Streamline Your Air Emissions Management

    See how consolidating all your emissions management functions into one centralized system can help you streamline your operations, more easily maintain compliance, and achieve greater time and cost savings.

  • A Crash Course in Creating the Right Environmental Scoring System

    Learn how to develop the right environmental scoring system so you can easily benchmark performance across all your facilities and gain a holistic view of your environmental programs.

  • Industry Safe