Hybrid Power Plants Can Help Industry Go Green

Hybrid cars, powered by a mixture of gas and electricity, have become a practical way to "go green" on the roads. Now researchers at Tel Aviv University (TAU) are applying the term "hybrid" to power plants as well.

Most power plants, explains Prof. Avi Kribus of TAU's School of Mechanical Engineering and its innovative new Renewable Energy Center, create power using fuel. And solar thermal power plants — which use high temperatures and pressure generated by sunlight to produce turbine movement — are currently the industry's environmentally-friendly alternative. But it's an expensive option, especially when it comes to equipment made from expensive metals and the solar high-accuracy concentrator technology used to harvest solar energy.
 
Now, a new technology Prof. Kribus has developed combines the use of conventional fuel with the lower pressures and temperatures of steam produced by solar power, allowing plants to be hybrid, replacing 25 to 50 percent of their fuel use with green energy. His method, which will be reported in a future issue of the Solar Energy Journal, presents a potentially cost-effective and realistic way to integrate solar technology into today's power plants.
 
Taking down the temperature for savings
 
In a solar thermal power plant, sunlight is harvested to create hot high-pressure steam, approximately 400 to 500 degrees centigrade. This solar-produced steam is then used to rotate the turbines that generate electricity.
 
Though the environmental benefits over traditional power plants are undeniable, Prof. Kribus cautions that it is somewhat unrealistic economically for the current industry. "It's complex solar technology," Kribus said. The materials alone, which include pipes made from expensive metals designed to handle high pressures and temperatures, as well as fields of large mirrors needed to harvest and concentrate enough light, make the venture too costly to be widely implemented.
 
Instead, with his graduate student Maya Livshits, Prof. Kribus is developing an alternative technology, called a steam-injection gas turbine. "We combine a gas turbine, which works on hot air and not steam, and inject the solar-produced steam into the process," he explains. "We still need to burn fuel to heat the air, but we add steam from low-temperature solar energy, approximately 200 degrees centigrade." This hybrid cycle is not only highly efficient in terms of energy production, but the lowered pressure and heat requirements allow the solar part of the technology to use more cost-effective materials, such as common metals and low-cost solar collectors.
 
A bridge to green energy
 
The hybrid fuel and solar power system may not be entirely green, said Prof. Kribus, but it does offer a more realistic option for the short and medium term. Electricity from solar thermal power plants currently costs twice as much as electricity from traditional power plants, he notes. If this doesn't change, the technology may never be widely adopted. The researchers hope that a hybrid plant will have a comparable cost to a fuel-based power plant, making the option of replacing a large fraction of fuel with solar energy competitive and viable.
 
The researchers are starting a collaboration with a university in India to develop this method in more detail, and are looking for corporate partnerships that are willing to put hybrid technology into use. It's a stepping stone that will help introduce solar energy into the industry in an accessible and affordable way, Prof. Kribus said.

Download Center

  • Your Guide to Environmental Metrics that Drive Performance

    Translating sustainability into action starts with implementing the right metrics to assess your environmental risk and performance. Learn how to design metrics that improve your decision-making process and drive enterprise performance.

  • Unpacking ESG: 6 Questions You Were Too Afraid to Ask

    Environmental and Sustainability experts from Arcadis and Cority answer 6 of the most pressing questions EHS professionals have about getting started with Environmental, Social, and Governance (ESG) reporting.

  • 5 Keys to Best-in-Class Chemical Management

    Running a safe chemical program is challenging and complex: from knowing what's on-site to proper handling and disposal - all while navigating regulatory changes. Learn the best ways to mitigate chemical risk, get the most value out of your data, and gain buy-in for a chemical management solution.

  • Streamline Your Air Emissions Management

    See how consolidating all your emissions management functions into one centralized system can help you streamline your operations, more easily maintain compliance, and achieve greater time and cost savings.

  • A Crash Course in Creating the Right Environmental Scoring System

    Learn how to develop the right environmental scoring system so you can easily benchmark performance across all your facilities and gain a holistic view of your environmental programs.

  • Industry Safe