Protein Plays Role in Helping Plants See Light

Plants do not have eyes or legs, yet they are able to "see" and move toward and away from light. This ability, called phototropism, is controlled by a series of molecular-level signals between proteins inside and between plant cells. In a paper published in The Plant Cell, University of Missouri scientists report for the first time the elusive role a critical protein plays in this molecular signaling pathway that regulates phototropism in plants.

Directional light that induces phototropism is sensed by a plant through the action of two light-sensing proteins, phototropin 1 and phototropin 2. These proteins act as photoreceptors and initiate the phototropic signaling response in conjunction with a third protein, called NPH3.
 
"If the phototropic signaling pathway were like a baseball game, the phototropins would be the pitcher and NPH3 the catcher who work together to coordinate the signal, or pitch," says Mannie Liscum, a professor of biological sciences in the College of Arts and Science and in the Christopher S. Bond Life Sciences Center. "Prior to this study, no one knew how NPH3 and the phototropins cooperated to facilitate the signal."
 
Using a combination of genetic and biochemical methods, Liscum and colleagues found that NPH3 functions as part of a protein complex that modifies phototropin 1 by the addition of a small protein "tag" called ubiquitin. Either a single ubiquitin or a chain of ubiquitin proteins is added, depending on the amount of light the plant "sees."
 
If we continue the baseball analogy, ubiquitin is the hand signals NPH3 uses to coordinate with phototropin 1 the type and sequence of signals depending on the particular lighting situation.
 
"In low-light conditions, phototropin 1 is modified with single ubiquitin proteins and then apparently moves to a different part of the cell. In high-light conditions, phototropin 1 is modified with multiple ubiquitin proteins and is degraded by the cell to shut down further signaling," says Liscum.
 
The finding may have applicability to research beyond phototropism in plants.
 
"The tagging of proteins with ubiquitin represents a common biochemical event throughout the biological world. In fact, many human disease pathologies are associated with alterations in ubiquitin-tagging," says Liscum. "Our studies identifying a single enzyme complex that is capable of modifying a substrate in different ways simply based on the environmental conditions may therefore have implications on fields far askew from agriculture."

 

Download Center

  • Monitoring and Reporting on Air Emissions for Regulators and the Real World

    When it comes to managing compliance and regulatory issues surrounding air emissions, there are no easy jobs. With interviews from practitioners from American Electric Power, Red Cedar Gathering, Trinity Consultants, and Cority, this eBook provides practical advice to advance your air emissions monitoring and reporting programs.

  • What Every EHS Professional Should Know About ESG

    Join experts from Arcadis and Cority on April 27th to learn the most common ESG reporting frameworks and how technology can help you improve reporting efficiency, identify areas for improvement, and create defensible audit trails.

  • Green Quadrant EHS Software 2021

    Read the new report by independent analyst firm, Verdantix, to get an unbiased comparison of the 22 most prominent EHS software vendors in the industry.

  • RFP Template for Waste Management Software

    Learn the essential questions to ask when evaluating waste management software solutions with this free, ready-to-use RFP template

  • 5 Keys to Best-in-Class Chemical Management

    Running a safe chemical program is challenging and complex: from knowing what's on-site to proper handling and disposal - all while navigating regulatory changes. Learn the best ways to mitigate chemical risk, get the most value out of your data, and gain buy-in for a chemical management solution.

Featured Webinar