New Synthetic Crystals First Step Toward Making High-Performance, Eco-Friendly Materials

Scientists have successfully created synthetic crystals whose structures and properties mimic those of naturally occurring biominerals such as seashells.

The findings, published in the journal Nature Materials, could be an important step in the development of high-performance materials, which could be manufactured under environmentally-friendly conditions.

Biological minerals or “biominerals” occur widely throughout nature in structures such as bones, teeth and seashells and frequently show remarkable shapes and properties compared with their synthetic counterparts.

A key feature of biominerals is that they are composite materials, made from an inorganic mineral such as calcium carbonate which contains a small amount of organic material, usually a protein.

The resulting structures are incredibly hard and their mechanical properties can rival those of man-made materials such as ceramics, which are typically manufactured under high temperatures and pressures, giving less opportunity for control over the material properties.

Scientists are interested in understanding how biology is able to perform such precision engineering in water at ambient temperatures so they can apply this principle to the design and production of synthetic materials that are much greener than existing ones.

Now a team led by Professor Fiona Meldrum, from the University of Leeds School of Chemistry, has succeeded in creating artificial biominerals that exhibit similar properties to biominerals such as sea urchin spines.

They did this by growing calcite crystals in the presence of synthetic polymer nanoparticles which act as artificial proteins. These nanoparticles are incorporated into the architecture of the crystal as it grows to create a composite material.

The researchers also tested the mechanical properties of the composite material using a nanoindenter, a small chisel-like tool that can prod a material and record its response to a force.

Meldrum said: "This method of creating synthetic biominerals gives us a unique insight into the structure of these incredible materials and the way the organic molecules are incorporated into the crystal structure at a microscopic level. We can then relate this microscopic structure to the mechanical properties of the material.

"What we found is that the artificial biomineral we have created is actually much harder than the pure calcite mineral because it is a composite material - where you add something soft to a hard substance to create something even harder than either of the constituent parts."

Co-author professor Stephen Eichhorn, who has just moved to the University of Exeter from the University of Manchester, said: "Biological examples of calcium carbonate-based structures have a higher hardness than pure mineral without proteins present. It is remarkable that we have been able to achieve the same result using a synthetic 'pseudo' protein."

"When I began researching the mechanical properties of seashells at Manchester my first PhD student and I literally collected them with a bucket and spade on the beach. I didn't imagine that we would get to the stage of being able to measure similar properties for materials made in the lab."

The researchers will now try to replicate their technique using different minerals.

Download Center

  • Monitoring and Reporting on Air Emissions for Regulators and the Real World

    When it comes to managing compliance and regulatory issues surrounding air emissions, there are no easy jobs. With interviews from practitioners from American Electric Power, Red Cedar Gathering, Trinity Consultants, and Cority, this eBook provides practical advice to advance your air emissions monitoring and reporting programs.

  • What Every EHS Professional Should Know About ESG

    Join experts from Arcadis and Cority on April 27th to learn the most common ESG reporting frameworks and how technology can help you improve reporting efficiency, identify areas for improvement, and create defensible audit trails.

  • Green Quadrant EHS Software 2021

    Read the new report by independent analyst firm, Verdantix, to get an unbiased comparison of the 22 most prominent EHS software vendors in the industry.

  • RFP Template for Waste Management Software

    Learn the essential questions to ask when evaluating waste management software solutions with this free, ready-to-use RFP template

  • 5 Keys to Best-in-Class Chemical Management

    Running a safe chemical program is challenging and complex: from knowing what's on-site to proper handling and disposal - all while navigating regulatory changes. Learn the best ways to mitigate chemical risk, get the most value out of your data, and gain buy-in for a chemical management solution.

Featured Webinar