2011 ‘Dead Zone’ Could Be Biggest Ever

Researchers from Texas A&M University have returned from a trip to examine the scope and size of this year’s “dead zone” in the Gulf of Mexico and have measured it at about 3,300 square miles, or roughly the size of Delaware and Rhode Island combined. Some researchers anticipate it becoming much larger.

Oceanography professor Steve DiMarco said the researchers journeyed over more than 1,400 miles throughout the Gulf over a five-day period, the first ever focusing on the month of June.

DiMarco said the size of the dead zone off coastal Louisiana has been routinely monitored for about 25 years. Previous research has also shown that nitrogen levels in the Gulf related to human activities have tripled over the past 50 years. During the past five years, the dead zone has averaged about 5,800 square miles and has been predicted to exceed 9,400 square miles this year, which would make it one of the largest ever recorded, according to the Louisiana Universities Marine Consortium.

Hypoxia occurs when oxygen levels in seawater drop to dangerously low levels, and severe hypoxia can potentially result in fish kills and harm marine life, thereby creating a “dead zone” of life in that particular area.

Because of record amounts of water flowing from the Mississippi River into the Gulf, there is keen interest in the dead zone areas this year, DiMarco explained, adding that the size of this year’s dead zone could still change because large amounts of water are still flowing into the Gulf of Mexico from the Mississippi River.

DiMarco said he will examine the area again Aug. 8 and will visit many of the same locations for additional data. In all, 10 researchers, including six graduate students, helped to collect data on the latest cruise, which was funded by the NOAA Center for Sponsored Coastal Ocean Research and Texas Sea Grant.

“This was the first-ever research cruise conducted to specifically target the size of hypoxia in the month of June,” DiMarco said. “We found three distinct hypoxic areas. One was near the Barataria and Terrebonne region off the Louisiana coast, the second was south of Marsh Island (also Louisiana) and the third was off the Galveston coast. We found no hypoxia in the 10 stations we visited east of the Mississippi delta.”

“The largest areas of hypoxia are still around the Louisiana coast, where you would expect them because of the huge amounts of fresh water still coming down from the Mississippi River,” he added. “The hypoxic area extends about 50 miles off the coast. The farther you go west toward Texas, there is still hypoxia, but less severe. However, we did see noticeable hypoxia near the Galveston area.”

The Mississippi is the largest river in the United States, draining 40 percent of the land area of the country. It also accounts for almost 90 percent of the freshwater runoff into the Gulf of Mexico. Participating at sea with DiMarco was Research Scientist Matt Howard. Shore-based participants from the oceanography department were professors Lisa Campbell and Wilf Gardner, as well as Antonietta Quigg from Texas A&M University-Galveston.

Download Center

  • Your Guide to Environmental Metrics that Drive Performance

    Translating sustainability into action starts with implementing the right metrics to assess your environmental risk and performance. Learn how to design metrics that improve your decision-making process and drive enterprise performance.

  • Unpacking ESG: 6 Questions You Were Too Afraid to Ask

    Environmental and Sustainability experts from Arcadis and Cority answer 6 of the most pressing questions EHS professionals have about getting started with Environmental, Social, and Governance (ESG) reporting.

  • 5 Keys to Best-in-Class Chemical Management

    Running a safe chemical program is challenging and complex: from knowing what's on-site to proper handling and disposal - all while navigating regulatory changes. Learn the best ways to mitigate chemical risk, get the most value out of your data, and gain buy-in for a chemical management solution.

  • Streamline Your Air Emissions Management

    See how consolidating all your emissions management functions into one centralized system can help you streamline your operations, more easily maintain compliance, and achieve greater time and cost savings.

  • A Crash Course in Creating the Right Environmental Scoring System

    Learn how to develop the right environmental scoring system so you can easily benchmark performance across all your facilities and gain a holistic view of your environmental programs.

  • Industry Safe