Environmental Protection

Professor Comes Up With Way to Neutralize Radioactive Iodine – In the Microwave

A University of Sheffield professor has found a novel way to immobilize radioactive forms of iodine using a microwave.

Iodine radioisotopes are produced by fission of uranium fuel in a nuclear reactor. Radioactive iodine is of concern because it is highly mobile in the environment and selective uptake by the thyroid gland can pose a significant cancer risk after long-term exposure. Furthermore, iodine-129, which is a type of radioactive iodine, has a half life of 15.7 million years and is one of the most significant long-term hazards faced by the population due to its emission during the geological disposal of nuclear waste.

Professor Neil Hyatt, from the University's Department of Materials Science and Engineering, has now found a way of locking up iodine radioisotopes in a durable, solid material suitable for ultimate disposal, like lead iodovanadinite(Pb5(VO4)3I). The research, which was published in the Journal of Nuclear Materials, demonstrates how his simple, inexpensive, and rapid method can be done at atmospheric pressure.

Hyatt and his team created a solid material for immobilization of iodine with the formula Pb5(VO4)3I, by heating a mixture of lead iodide, lead oxide, and vanadium oxide.

Previously, this has been achieved using only high pressure and a sealed container, because iodine is volatile at high temperatures. However, using the knowledge that vanadium is a good absorber of microwaves at 2.45 GHz – the frequency used in domestic microwave ovens – the team was able to heat the mixture of chemicals in a microwave oven to produce Pb5(VO4)3I in about three minutes.

The key to the method's success is that Pb5(VO4)3I is a poor absorber of 2.45 GHz microwaves, so once this is formed, the sample cannot absorb microwaves, so the temperature does not get high enough for the iodine to volatilize.

Iodine-131 was the harmful gas emitted from the Fukushima power plant in Japan following the earthquake and tsunami in January, was a significant contributor to the health effects from open-air atomic bomb testing in the 1950s, and also emitted during the Chernobyl disaster. It is hoped the new research will reduce the public health impact associated with the release of radioactive iodine to the environment by providing a simple and inexpensive method of immobilization in a solid material, which could be rapidly deployed in an accident scenario.

Hyatt said: "In spent nuclear fuel, the iodine is not immobilized, so once the containment is breached it simply gets dispersed. At present, iodine-129 released by nuclear fuel reprocessing is discharged direct to the Irish Sea off the coast of Sellafield. Substantial quantities of this radioisotope were also released into the sea off the coast of Japan in the Fukushima incident. Our new method offers a way of safely and rapidly containing this radionuclide, reducing the potential long term impact on human health from discharge to the environment."
 


comments powered by Disqus

Free e-News Subscription

I agree to this site's Privacy Policy